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Scattering of Very Intense Electromagnetic Waves* 
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The conventional dispersion formula for the scattering cross section of light is extended to include the 
case of a very high intensity light. The resulting formula predicts an appreciable decrease of the cross section 
compared to the conventional theory, as the intensity of the light increases. The decrease appears when the 
energy density of the light becomes comparable to [&(coo—oo)/M22eo, where coo is the resonance frequency of 
the scattering medium, a> is the frequency of the light, M is the transition dipole moment, and eo is the 
capacitivity of the vacuum. In a typical case, this means we need about 1010 W/cm2 of the light intensity, 
which is obtainable with a focused optical maser. 

INTRODUCTION 

THE scattering of electromagnetic waves by an atom 
has been investigated theoretically by many 

people. The classical dispersion formula is discussed by 
Lorentz,1 and its quantum-mechanical deviation is 
obtained by Kramers and Heisenberg,2 and Waller.3 

All these discussions are conveniently summarized in 
Heitler's text book.4 

The classical and the quantum-mechanical formulas 
are both obtained by assuming that the electromagnetic 
wave is a small perturbation compared to the atomic 
energy. The recent invention of masers, however, makes 
it possible to have a very intense coherent electro
magnetic wave. A ruby optical maser is known to 
produce at least 105 W/cm2 and there is no reason that 
this should be the upper limit.5 It is, thus, worthwhile to 
reinvestigate the problem to see what happens for a very 
intense electromagnetic wave. 

TIME-DEVELOPMENT OPERATOR 

The Schrodinger wave equation, 

from another state i is 

can be solved symbolically as 

V(t) = exp(-iHt/h)V(0), 

(1) 

(2) 

if the Hamiltonian H does not depend on time explicitly, 
which is true in the Schrodinger representation. ^(/) 
is the wave function of time /, while SI>(0) is that at the 
initial time. The operator exp(—iHt/h) is called the 
time-development operator. 

The probability of rinding a state / at time / starting 
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W ) = / 
¥/**•(/) dv 

I-V(0)exp(-*H</ft)*,-(0) dv (3) 

using (2). All radiation process problems can be solved 
by this formula with 

H=Ha+Hr+Hi, (4) 

where Ha is the Hamiltonian of an atom, Hr is that of 
the radiation field, and Hi gives the interaction between 
the atom and the radiation field. 

Each part of the Hamiltonian is well known4 and in 
a representation in which Ha and Hr are orthogonal we 
have 

(a nifi2 •••%••• n» • • • | Ha+Hr | a nitiz • • • n\ • • • n^ • • •) 
= Wa+h(ooini+Q)2n2-] ho>\n\-\ h c w l ) , 

(5) 

where Wa is the energy of the atom in the a state, o>\ 
is the frequency of the Xth radiation mode, and n\ is 
the quantum number of that mode. The zero-point 
energy of the radiation field is neglected and presumably 
Wa includes renormalization. In this representation the 
interaction part of the Hamiltonian has nondiagonal 
matrix elements. If the wavelengths of the Xth and the 
nth mode are much larger than the dimension of the 
atom, the following formulas give good approximations 
to the Hamiltonian matrix : 

(b ni • • • %+1 • • • 
= icoba(b\efX*Ml 

\Hi\ani- - -tip* • •) 

\a)ZHn,+ l)/2^eQVjf2, (6) 
(ani • • • n\ • • • ̂ M+1 • • • | Hi \ an\ • • • n\+1 • • • / v • •) 

= (Zeyirn) (h/2e0V)l(nx+1) ( » „ + 1 ) / ^ ] 1 ' 2 

X(ex.eM), (7) 
where 

ma=(Wh-Wa)/h. (8) 

V is the volume of the cavity, eo is the capacitivity of 
vacuum, e and m are charge and mass of the electron, 
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respectively, e\ and K\ are polarization and propagation 
vectors of the Xth mode, M e is the electric dipole 
moment of the atom, and Z is the number of electrons 
in the atom. 

Suppose we find eigenvalues Em and eigenfunctions 
<£m of our Hamiltonian H. We can express our initial 
and final states as 

¥ < = £ « M 0 * m , (9) 

* / = £ « ( * » ! / ) * „ , (10) 

and the transition i—*f to be found at time t is, 
according to (3), 

W ) = I L - ( / k ) ( w | i ) e x p ( ~ ^ m / A ) | 2 , (11) 

since the <£'s are eigenf unctions of H and are ortho-
normal to each other. This equation formally solves the 
transition problems. 

CONVENTIONAL SCATTERING FORMULA 

Although we solved the problem formally, it is 
rather difficult to follow this procedure exactly since 
it is almost impossible to obtain exact eigenvalues of 
our Hamiltonian. We, therefore, use the perturbation 
theory to obtain approximate solutions. Since our 
Hamiltonian has no time dependence, it is the ordinary 
perturbation theory and not the time-dependent 
perturbation theory we are using, although we are 
discussing a time-development problem. 

Suppose the initial state is such that the atom is in 
its ground state a and photon quantum numbers are 
all zero except for the Xth mode. We also assume that 
the frequency of this Xth mode does not satisfy the 
resonance condition with the atom, or we cannot find 
any atomic excited state af for which 

0)\ = 0)a>a. (12) 

If there exists such an atomic excited state, we will have 
the absorption or the resonance-scattering problem 
and not the ordinary scattering problem we are consider
ing here. 

If the cavity is large compared to the wavelength of 
the Xth mode, there exist other modes whose frequencies 
are quite close to cox. Let us call one of these modes ju. 
We see then that our initial state \aQ0- - -nO- - -), 
where only the Xth mode is excited to the quantum-
number n state, has almost the same energy as another 
state j a 00 • • • n— 1 0 • • • 010 • • •), where the Xth mode is 
in the n—\ state and the \x\h mode is excited to the 
quantum-number 1 state. In applying the perturbation 
theory this degeneracy is to be removed first. Since 
these two states are connected by the matrix element 
(7) directly, this part of the Hamiltonian matrix can be 
written, neglecting all radiation modes except for the 
X and fx modes, 

(an0\H\an0) (anQ\H\an-U) 1 
, (13) 

(an-ll\H\an0) (a n-11\ H\ an-11) J 

where all matrix elements can be obtained from (5) 
and (7). 

I t is easy to see that if we obtain approximate 
eigenvalues and eigenfunctions from this small matrix 
(13) and use formula (11), we obtain the Waller term3 

of the scattering probability : 

lim I (a nO —> a n—11; t) 
t-+oo 

^{2TT/W) \(an0\H\a n-ll)\Hd(cox-^). (14) 

Excited atomic states can appear through matrix 
elements (6). The effect of such matrix elements can be 
taken into account by using a perturbation theory if the 
photon number is not too large. The Van Vleck trans
formation,6 which is a second-order perturbation, is 
suitable in our calculation. If we modify each matrix 
element of (13) in this way we obtain the Kramers-
Heisenberg dispersion formula2 with the Waller term: 

Lim I(a nO —•> a n~ 11; t) 

^(2ir/ft2)n(«/€oF)18{E(i|ex-M#k)(a|eM-M.|ft) 
b 

X[(co&a-co)-1+(co6a+co)-1]}^5(cox ,-co/), (15) 

where 
co=co\ or co/x, 

while 

cox, = cox+E6(co/2^oF) |(^ |ex-M e |a) |2 

X[(co&a-co)"1+(W&a+co)-1], (16) 

and a similar expression for co/. 
The energy conservation rule, 

cox' = « / , (17) 

can be reasonably interpreted when we observe that 
the added term in (16) is nothing but a\/V, where a\ 
is the polarizability of the atom for the Xth mode of the 
field. I t is easy to see that if we have a system of N 
atoms this added term will be Na\/V, so that our con
servation rule (17) means that cox (index of refraction) 
should be conserved for the scattering process. 

SCATTERING OF INTENSE ELECTRO
MAGNETIC WAVE 

If the photon number n of a mode is very large, it 
can reach a point where 

uba(b\e-Me\a)lhn/2ueoVj'2^h\ma-o>\ . (18) 

In this case the conventional formula (15), which is 
essentially the second-order perturbation term, is not a 
good approximation to take into account the atomic 
virtual excitation. In the case of the optical region this 
can happen if the beam intensity is 1010 W/cm2 or 
more. This is not impossible for a focused maser beam. 

6 J. H. Van Vleck, Phys. Rev. 33, 467 (1929). 
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In the microwave region the same situation can appear 
at 105 W/cm2. 

The initial state of the scattering | a n 0) is connected 
to states \bn—10) and \bn+l 0) through the virtual 

atomic excitation, while the final state \an—11) is 
connected to \b n—2 1) and \b n 1) states in the same 
way. The matrix for these six states is obtained by (6) 
and (7) as 

0 AW2 

h(o)ba — 0)\) 

Hermitian 

A'in+l)1'2 

0 
h(a)ba+0)\) 

Bn1'2 

a 0 
#(coM—a>\) 

0 
B(n-iyi2 

0 
A'{n-l)li2 

fli^ba — ^OOX+O)^) 

a ) 
Bnl<2 

B{n+iy2 

A'nl>2 

0 
^(w&a+Ov)^ 

(19) 

where 

Af = u,ha{b\^Me\a){h/2^e,Vyi2, 

C=i^ba(b\e^Me\a)(h/2^eoVyf2, (20) 

B= - (Zei/2m) (h/2o)e0V) (ex-eM), 

and all diagonal elements of the A2 term in the Hamil-
tonian are neglected. 

Of course, there exist many other atomic states 
beside a and b states, but in most atoms the matrix 
element A or C is very large between the ground state 
and the first excited state compared to all other combin
ations. In the case of the hydrogen atom, for example,7 

if a is the Is state, we can take a 2p state for b and 
neglect all others, since A or C between Is and 2p is 
more than 5 times as large as the sum of matrix elements 
between Is and all bound states except 2p. 

We assume that the photon number n is very large. 
Since A and C are of the same order of magnitude, we 
see that matrix elements with A in it are much more 
important than those with C in (19). We know that 
B terms in (19) are also unimportant. Actually, Power 
and Zienau8 showed that as long as we are interested 
in the limit t —> oo, the result will not change by neg
lecting B terms and replacing co&a by cox and coM in A and 
C, respectively. The validity of this statement is seen 
in the conventional formula (15). Since Power and 
Zienau's scheme will simplify our calculation we will 
take that in the rest of this paper and define 

A = icox (b | ex • M e J a) (h/2a>xe0Vy2, 

C= 
i^{b\^me\a)(fi/2^e,Vyi\ 

i^(b\^-Me\a)(h/2o>^Vy'2. (21) 

I t is clear that the first approximation for our 
eigenvalues of (19) can be obtained by diagonalizing 
the A terms, namely, diagonalizing each 3 by 3 matrix. 

In many cases we have 

0)ba2>U\ , (22) 

In such case of off-resonance the diagonalization of 
7 See H. A. Bethe and E. E. Salpeter, Quantum Mechanics of 

One- and Two-Electron Atoms (Academic Press Inc., New York, 
1957); and E. V. Condon and G. H. Shortley, The Theory of 
Atomic Spectra (Cambridge University Press, New York, 1953). 

8 E . A. Power and S. Zienau, Phil. Trans. Roy. Soc. London 
251, 427 (1959). 

the first 3 by 3 matrix made by \an0), | b n — 1 0 ) , 
and |6 w—1 0) gives 

E ± < 1 ) - ^ 6 a / 2 ± X 2 , (23) 

E0v = hma, (24) 

t±w = lj±\an0)+(r]±/^2)\:\bn-10)+\bn+10)'], 
(25) 

^0(D = 2-i/2[| b n-1 0) - | b n+1 0 ) ] , (26) 

where £, t\ are transformation coefficients given by 

£± = ^ / y X F ± , (27) 

^ = ± | £ T H ± F ± / X V 2 , (28) 

where 
X=Z2\A\ 2n+fi2o>ba2/±JlA, (29) 

Y±=[X\ho>ba/2ji2. (30) 

The diagonalization of the second 3 by 3 matrix gives 

^ 2 ) = ^ ( ^ - c o x ) + f e 6 a / 2 ± X 2 , (31) 

£o(2) = &(coM-a>x+co&a), (32) 

^ = £ ± 1 ^ - 1 l)+(v±/^J2)l\bn-21)+\bnl)^, 

(33) 

^o(2 ) = 2-i/2[ \bn-2 1)-\bnl)1. (34) 

I t is sometimes important to notice that all coeffi
cients in the second case are slightly different from the 
first case, namely, n—1 should be used instead of n. 
In our present calculation, however, we can neglect such 
small differences. 

We see that out original matrix (19) is now trans
formed to 

0 
-£+C/v2| 
-£-C/V2| 

0 
0 

£o<2) 

(35) 
When OOU=(JO\ we see that 

"E0
(1) 0 

Hermitian 

0 £+C/v2 
0 2^+rj+C^ 

EJD 21/2?_77+CV2 
E+™ 0 

EJ® 

(36) 
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thus 

§[E+<»+£+
(2)]±P*2(a>x-ov)2/4+21 Z+v+C\'Ji\ (37) 

:^±=|±V+
( 1 )+'?±V+

( 2 ) , (38) 

i[E_<1>+E_<2>]±[fc2(Wx-coM)V4+2 [ ^_C12] 1 ' 2 , (39) 

:^±'=£±V-(1)+*?±'vfr-(2) (40) 

will be the improved eigenvalues and eigenfunctions. 
Since 

\an0) 

-M-:+Y+ 
( D _ W-' (i) 

= -*+«+ ' ^ + +£- ' *>-)-*-(«+' «>+'+{-' *>_') , (41) 

l a w - l l ) 
= -UV+<P++V-<P-)-UVV <P+'+V- <P-), (42) 

the scattering probability is 

lim | (an-\\\exp(-iHtffi)\anO)\2/t 
£->00 

= (27r/^)U+l42|f+77+C|25[(£+^)-E+^)A] 

+ (2TT/^2) I f_ 1421 f_,_C 125[EJ» -EJ2>)/ft] 

£*(2TT/^2) U 161C | W(2 U | 2#+& W / 4 ) " 2 

X[F+-4+F__-4]5(cox-coM) 

= (2TTA2) UCI %(U 12#+ft W / 4 ) / 

X(2U|%+^co6a
2/4)25(cox-^). (43) 

When the photon number n is small this formula reduces 
to 

( 2 T T / # 0 4 U C | V(^6a)25(cox-coM), (44) 

which agrees with the conventional scattering formula 
in the nonresonant region. 

When n is very large, however, our formula (43) 
predicts that the scattering cross section will decrease 
considerably from the conventional value. The calc
ulated scattering cross sections are given in Fig. 1. 

It is easy to investigate another limiting case, namely, 

1.0 I.I 1.2 1.3 

FIG. 1. Scattering cross section as a function of photon number n. 
<ro is the conventional scattering cross section. o: = 4|^4 |2/#2co&a2 

for the nonresonant case, while a = 2\A\2/fi2(coba—o})2 for the 
nearly resonant case. 

the nearly resonant case, where 

0)ba=0)\, &V (45) 

As we can see from (19), the effect of \bn+l 0) and 
j b n 1) states are negligible compared to those of 
jb n— 1 0) and | b n—2 1) states, in the nearly resonant 
case. Under such circumstances the calculation can be 
done easily and we obtain the final result 

lim| (an-1 11exp(-iHt/h)\an0)\2/t 
= (2TTA2) \AC\2n[21A |%+&2(co6a-co)2] 

X[4M|^+^2(co6a-co)2]-25(coM-a;x). (46) 

We see that this formula also reduces to the conven
tional one when n is small, but predicts a considerable 
decrease of the scattering cross section when n is large. 
The calculated results for the nearly resonant case is 
also shown in Fig. 1. 

A photon beam of 105 W/cm2 means that knu/V is 
about 3 J/m3. For a typical case this value gives the 
ratio \A\2n/h2o)ba

2 to be about 10~10. The anomaly 
calculated here may be detectable when a photon beam 
of 1010 W/cm2 is used. The anomaly also appears in the 
index of refraction. The latter will be discussed in a 
separate paper. 


